Maximality and Ultracompleteness in Normed Modules
نویسندگان
چکیده
منابع مشابه
Maximality and Ultracompleteness in Normed Modules1
1. What follows is a drastically stripped down version of a paper completed several years ago. The original intention was to present a careful treatment of the developments centering around the maximally concept in classical valuation theory, using modern ideas and the natural setting of an additive group, and to apply the resulting theory to systematize and simplify some recent investigations ...
متن کاملdedekind modules and dimension of modules
در این پایان نامه، در ابتدا برای مدول ها روی دامنه های پروفر شرایط معادل به دست آورده ایم و خواصی از ددکیند مدول ها روی دامنه های پروفر مشخص کرده ایم. در ادامه برای ددکیند مدول های با تولید متناهی روی حلقه های به طور صحیح بسته شرایط معادل به دست آورده ایم و ددکیند مدول های ضربی را مشخص کرده ایم. گزاره هایی در مورد بعد ددکیند مدول ها بیان کرده ایم. در پایان، قضایای lying over و going down را برا...
15 صفحه اولinjective modules and prime ideals
محور اصلی این پایان نامه، r- مدولهای a – انژکتیو می باشد که آنها را به عنوان یک تعمیم از مدول های انژکتیو معرفی می کنیم. در ابتدا مدول های انژکتیو را معرفی کرده، سپس برخی نتایج مهم وشناخته شده مدول های انژکتیو را به مدول های a – انژکتیو تعمیم می دهیم. در ادامه رابطه بین مدول های a – انژکتیو و حلقه های نوتری را بررسی می کنیم. پس هدف کلی این پایان نامه این است که با بررسی انژکتیو بودن ایده آله...
15 صفحه اولExtreme Flatness of Normed Modules and Arveson-wittstock Type Theorems
We show in this paper that a certain class of normed modules over the algebra of all bounded operators on a Hilbert space possesses a homological property which is a kind of a functional-analytic version of the standard algebraic property of flatness. We mean the preservation, under projective tensor multiplication of modules, of the property of a given morphism to be isometric. As an applicati...
متن کاملPositively Convex Modules and Ordered Normed Linear Spaces
A positively convex module is a non-empty set closed under positively convex combinations but not necessarily a subset of a linear space. Positively convex modules are a natural generalization of positively convex subsets of linear spaces. Any positively convex module has a canonical semimetric and there is a universal positively affine mapping into a regularly ordered normed linear space and a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1958
ISSN: 0002-9939
DOI: 10.2307/2033414